Minkowski content for the scaling limit of the 3D LERW

Saraí Hernández-Torres (UNAM) Joint work with

Xinyi Li (PKU) \& Daisuke Shiraishi (Kyoto)

Statistical Mechanics Beyond 2D IPAM, UCLA
May 2024

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$
- The loop-erased random
walk
$\gamma_{m}=L E\left(S\left[0, \tau_{m}\right]\right)$
is the path created by
deleting the loops of $S\left[0, \tau_{m}\right]$ in chronological order.
[Lawler, '80]

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$
- The loop-erased random
walk
$\gamma_{m}=L E\left(S\left[0, \tau_{m}\right]\right)$
is the path created by
deleting the loops of $S\left[0, \tau_{m}\right]$ in chronological order.
[Lawler, '80]

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$
- The loop-erased random
walk
$\gamma_{m}=L E\left(S\left[0, \tau_{m}\right]\right)$
is the path created by
deleting the loops of $S\left[0, \tau_{m}\right]$ in chronological order.
[Lawler, '80]

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$
- The loop-erased random
walk
$\gamma_{m}=L E\left(S\left[0, \tau_{m}\right]\right)$
is the path created by
deleting the loops of $S\left[0, \tau_{m}\right]$ in chronological order.
[Lawler, '80]

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$
- The loop-erased random
walk
$\gamma_{m}=L E\left(S\left[0, \tau_{m}\right]\right)$
is the path created by
deleting the loops of $S\left[0, \tau_{m}\right]$ in chronological order.
[Lawler, '80]

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$
- The loop-erased random
walk
$\gamma_{m}=L E\left(S\left[0, \tau_{m}\right]\right)$
is the path created by
deleting the loops of $S\left[0, \tau_{m}\right]$ in chronological order.
[Lawler, '80]

Loop-erased random walk (LERW)

- $S=\left(S_{n}\right)_{n \geq 1}$ is a simple random walk on \mathbb{Z}^{d}.
- $S\left[0, \tau_{m}\right]=\left[S_{0}, \ldots, S_{\tau_{m}}\right]$
- The loop-erased random
walk
$\gamma_{m}=L E\left(S\left[0, \tau_{m}\right]\right)$
is the path created by
deleting the loops of $S\left[0, \tau_{m}\right]$ in chronological order.
[Lawler, '80]

One-point estimates for LERW

On \mathbb{D}_{m}, we look at $P\left(x_{n} \in \gamma_{n}\right)$

- Growth exponent
- Scaling limit
- Minkowski content for the scaling limit

LERW in 2D

Growth exponent is $\beta_{2}=5 / 4$ [Kenyon '00] - $M_{n}=\inf \left\{k \geq 0:\left|\gamma_{\infty}\right| \geq n\right\}$ - $\mathbb{E}\left(M_{n}\right) \approx n^{\beta_{2}} \approx n^{2-3 / 4}$

$$
\mathbb{P}\left(r e^{i \theta} \in \gamma_{\infty}\right) \simeq c_{\theta} r^{-3 / 4\left(1+o_{r}(1)\right)}
$$

LERW in 2D

Growth exponent is $\beta_{2}=5 / 4$ [Kenyon '00]
[Schramm '99, Lawler-Schramm-Werner '01, Lawler-Viklund '16] The scaling limit of LERW on \mathbb{Z}^{2} is SLE(2)

LERW in 2D

Growth exponent is $\beta_{2}=5 / 4$ [Kenyon '00]
[Schramm '99, Lawler-Schramm-Werner '01, Lawler-Viklund '16]
The scaling limit of LERW on \mathbb{Z}^{2} is SLE(2)

- Convergence in the natural parametrization [Lawler-Viklund '16].
- SLE(2) parametrized by its Minkowski content
[Lawler-Sheffield '09, Lawler-Rezaei '12].

LERW in 2D

Growth exponent is $\beta_{2}=5 / 4$ [Kenyon '00]
[Schramm '99, Lawler-Schramm-Werner '01, Lawler-Viklund '16]
The scaling limit of LERW on \mathbb{Z}^{2} is SLE(2)

- Convergence in the natural parametrization [Lawler-Viklund '16].
- SLE(2) parametrized by its Minkowski content
[Lawler-Sheffield '09, Lawler-Rezaei '12].

- Strong estimate of one-point function [Benes-Lawler-Viklund '14].

$$
\mathbb{P}\left(r e^{i \theta} \in \gamma_{\infty}\right) \sim c r^{-3 / 4}
$$

LERW beyond 2D

Scaling limit

SLE(2)

One-point function of LERW
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{-3 / 4}$
[Benes-Lawler-Viklund '14]

LERW beyond 2D

Scaling limit

Brownian motion

SLE (2)

One-point function of LERW
$x \in \mathbb{D}, x_{n} \in \mathbb{D}_{n}$
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{2-d}$ [Lawler]
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{-3 / 4}$
[Benes-Lawler-Viklund '14]

LERW beyond 2D

Scaling limit

Brownian motion

Brownian motion

SLE(2)

One-point function of LERW
$x \in \mathbb{D}, x_{n} \in \mathbb{D}_{n}$
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{2-d}$ [Lawler]
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{-2}(\log n)^{-1 / 3}$
[Lawler-Sun-Wu '16]
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{-3 / 4}$
[Benes-Lawler-Viklund '14]

LERW beyond 2D

Scaling limit

Brownian motion

Brownian motion

SLE(2)

$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{-2}(\log n)^{-1 / 3}$
[Lawler-Sun-Wu '16]
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{\beta-3}$
$P\left(x_{n} \in \gamma_{n}\right) \sim c n^{-3 / 4}$
[Benes-Lawler-Viklund '14]

Scaling limit of the 3D LERW

[Kozma '05] Convergence of trace

- Let $P \subset \mathbb{R}^{3}$ be a polyhedron.
- $P_{m}=P \cap m^{-1} \mathbb{Z}^{3}$
- γ_{m} LERW on $P_{2^{-n}}$.
$\gamma_{2^{-n}} \Rightarrow \mathscr{K}$ w.r.t. the Hausdorff metric.
\& \mathscr{K} is scale- and rotation-invariant

Scaling limit of the 3D LERW

[Kozma '05] Convergence of trace

- Let $P \subset \mathbb{R}^{3}$ be a polyhedron.
- $P_{m}=P \cap m^{-1} \mathbb{Z}^{3}$
- γ_{m} LERW on $P_{2^{-n}}$.
$\gamma_{2^{-n}} \Rightarrow \mathscr{K}$ w.r.t. the Hausdorff metric.
$\& \mathscr{K}$ is scale- and rotation-invariant

[Sapozhnikov-Shiraishi '15]

\mathscr{K} is a simple curve a.s.

Growth exponent of 3D LERW

[Shiraishi '13]

- Let $M_{n}=\inf \left\{k \geq 0:\left|\gamma_{\infty}\right| \geq n\right\}$

Then there exists $\beta \in(1,5 / 3]$ such that

$$
\mathbb{E}\left(M_{n}\right)=n^{\beta+o(1)}
$$

[Shiraishi '16] $\operatorname{dim}_{H} \mathscr{K}=\beta$
[Shiraishi '13]
$P\left(x_{n} \in \gamma_{n}\right)=n^{\beta-3+o(1)}$

Scaling limit of the 3D LERW

[Li-Shiraishi '18]

- β is the growth exponent of the 3D LERW
- γ_{m} LERW on $\mathbb{D}_{m}, \mathscr{K}_{m}=\operatorname{trace}\left(\gamma_{m}\right)$

Scaling limit of the 3D LERW

[Li-Shiraishi '18]

- β is the growth exponent of the 3D LERW
- γ_{m} LERW on $\mathbb{D}_{m}, \mathscr{K}_{m}=\operatorname{trace}\left(\gamma_{m}\right)$
- $f_{m}=m^{3} \mathbb{P}\left(\hat{x}_{m} \in \gamma_{m}\right) \approx m^{\beta}$

Scaling limit of the 3D LERW

[Li-Shiraishi '18]

- β is the growth exponent of the 3D LERW
- γ_{m} LERW on $\mathbb{D}_{m}, \mathscr{K}_{m}=\operatorname{trace}\left(\gamma_{m}\right)$
- $f_{m}=m^{3} \mathbb{P}\left(\hat{x}_{m} \in \gamma_{m}\right) \approx m^{\beta}$

。 $\mu_{m}=\left(f_{m}\right)^{-1} \sum_{x \in \mathscr{K}_{m}} \delta_{x}$

Scaling limit of the 3D LERW

[Li-Shiraishi '18]

- β is the growth exponent of the 3D LERW
- γ_{m} LERW on $\mathbb{D}_{m}, \mathscr{K}_{m}=\operatorname{trace}\left(\gamma_{m}\right)$
- $f_{m}=m^{3} \mathbb{P}\left(\hat{x}_{m} \in \gamma_{m}\right) \approx m^{\beta}$
- $\mu_{m}=\left(f_{m}\right)^{-1} \sum_{x \in \mathscr{K}_{m}} \delta_{x}$
$\circ\left(\mathscr{K}_{m}, \mu_{m}\right) \Rightarrow(\mathscr{K}, \mu)$

Scaling limit of the 3D LERW

[Li-Shiraishi '18]

$\circ \beta$ is the growth exponent of the 3D LERW

- γ_{m} LERW on $\mathbb{D}_{m}, \mathscr{K}_{m}=\operatorname{trace}\left(\gamma_{m}\right)$
- $f_{m}=m^{3} \mathbb{P}\left(\hat{x}_{m} \in \gamma_{m}\right) \approx m^{\beta}$
- $\mu_{m}=\left(f_{m}\right)^{-1} \sum_{x \in \mathscr{K}_{m}} \delta_{x}$
$\circ\left(\mathscr{K}_{m}, \mu_{m}\right) \Rightarrow(\mathscr{K}, \mu)$
In the topology generated by the metric

$$
\begin{aligned}
& \rho\left(\lambda_{1}, \lambda_{2}\right)=\left|T_{1}-T_{2}\right|+\sup _{0 \leq s \leq 1}\left|\lambda_{1}\left(s T_{1}\right)-\lambda_{2}\left(s T_{2}\right)\right| \\
& \lambda_{i}:\left[0, T_{i}\right] \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

Scaling limit of the 3D LERW

[Li-Shiraishi '18]

$\circ \beta$ is the growth exponent of the 3D LERW

- γ_{m} LERW on $\mathbb{D}_{m}, \mathscr{K}_{m}=\operatorname{trace}\left(\gamma_{m}\right)$
- $f_{m}=m^{3} \mathbb{P}\left(\hat{x}_{m} \in \gamma_{m}\right) \approx m^{\beta}$
- $\mu_{m}=\left(f_{m}\right)^{-1} \sum_{x \in \mathscr{K}_{m}} \delta_{x}$
$\circ\left(\mathscr{K}_{m}, \mu_{m}\right) \Rightarrow(\mathscr{K}, \mu)$

One-point estimate on dyadic sequences

$P\left(x_{2^{n}} \in \gamma_{2^{n}}\right) \simeq c_{x} 2^{-(3-\beta) n}$ [Li-Shiraishi ' 18$]$

One-point function of the 3D LERW

[H.T.-Li-Shiraishi, '24]

- Ball-hitting probability for \mathscr{K}

$$
P(\mathscr{K} \cap B(x, r) \neq \varnothing)=c g(x) r^{3-\beta}\left[1+O\left(d_{x}^{-c} r^{\delta}\right)\right]
$$

- One-point estimate

$$
P\left(x_{m} \in \mathscr{K}_{m}\right)=c_{1} g(x) m^{-(3-\beta)}\left[1+O\left(d_{x}^{-c} m^{-\delta}\right)\right]
$$

\& the function g is continuous and rotation-invariant

One-point function of the 3D LERW

[H.T.-Li-Shiraishi, '24]

- Ball-hitting probability for \mathscr{K}

$$
P(\mathscr{K} \cap B(x, r) \neq \varnothing)=c g(x) r^{3-\beta}\left[1+O\left(d_{x}^{-c} r^{\delta}\right)\right]
$$

- One-point estimate

$$
P\left(x_{m} \in \mathscr{K}_{m}\right)=c_{1} g(x) m^{-(3-\beta)}\left[1+O\left(d_{x}^{-c} m^{-\delta}\right)\right]
$$

\& the function g is continuous and rotation-invariant

- Continuity result

$$
P\left(\mathscr{K} \cap B(x, r) \neq \varnothing, \mathscr{K} \cap B^{\circ}(x, r)=\varnothing\right)=0
$$

Proposition. For each $s>0$ there exists $m_{0}>0$ so that for all $m>m_{0}$

$$
P\left(\mathscr{K}_{m} \cap B(\hat{x}, s) \neq \varnothing\right)=c_{3} s^{3-\beta}\left[1+O\left(s^{\delta}\right)\right]
$$

Proposition. For each $s>0$ there exists $m_{0}>0$ so that for all $m>m_{0}$

$$
P\left(\mathscr{K}_{m} \cap B(\hat{x}, s) \neq \varnothing\right)=c_{3} s^{3-\beta}\left[1+O\left(s^{\delta}\right)\right]
$$

Proposition. For each $s>0$ there exists $m_{0}>0$ so that for all $m>m_{0}$

$$
P\left(\mathscr{K}_{m} \cap B(\hat{x}, s) \neq \varnothing\right)=c_{3} s^{3-\beta}\left[1+O\left(s^{\delta}\right)\right]
$$

Proposition. For each $s>0$ there exists $m_{0}>0$ so that for all $m>m_{0}$

$$
P\left(\mathscr{K}_{m} \cap B(\hat{x}, s) \neq \varnothing\right)=c_{3} s^{3-\beta}\left[1+O\left(s^{\delta}\right)\right]
$$

Proposition. For each $s>0$ there exists $m_{0}>0$ so that for all $m>m_{0}$

$$
P\left(\mathscr{K}_{m} \cap B(\hat{x}, s) \neq \varnothing\right)=c_{3} s^{3-\beta}\left[1+O\left(s^{\delta}\right)\right]
$$

Proposition. For each $s>0$ there exists $m_{0}>0$ so that for all $m>m_{0}$

$$
P\left(\mathscr{K}_{m} \cap B(\hat{x}, s) \neq \varnothing\right)=c_{3} s^{3-\beta}\left[1+O\left(s^{\delta}\right)\right]
$$

Minkowski content

$A \subset \mathbb{R}^{3}$ bounded Borel set

Minkowski content

$A \subset \mathbb{R}^{3}$ bounded Borel set

$$
\begin{aligned}
& B(A, r)=\left\{x \in \mathbb{R}^{3}, \operatorname{dist}(x, A) \leq r\right\} \\
& \operatorname{Cont}_{\alpha}(A)=\lim _{r \downarrow 0} r^{\alpha-3} \operatorname{Vol}(B(A, r))
\end{aligned}
$$

Minkowski content

$A \subset \mathbb{R}^{3}$ bounded Borel set

$$
\begin{aligned}
& B(A, r)=\left\{x \in \mathbb{R}^{3}, \operatorname{dist}(x, A) \leq r\right\} \\
& \operatorname{Cont}_{\alpha}(A)=\lim _{r \downarrow 0} r^{\alpha-3} \operatorname{Vol}(B(A, r))
\end{aligned}
$$

Criterion for existence of Minkowski content

$$
\begin{aligned}
& g(z)=\lim _{s \rightarrow 0} s^{\beta-3} P(B(z, s) \cap \mathscr{K} \neq \varnothing) \\
& g(z, w)=\lim _{s \rightarrow 0} s^{2(\beta-3)} P(B(z, s) \cap \mathscr{K} \neq \varnothing, B(w, s) \cap \mathscr{K} \neq \varnothing)
\end{aligned}
$$

Minkowski content and limiting occupation measure

[H.T.-Li-Shiraishi, '24]

For any "nice" box $V \subset \mathbb{D}$, the β-Minkowski content $\operatorname{Cont}_{\beta}(\mathscr{K} \cap V)$
exists. Moreover, if

- μ is the limiting occupation measure, and
- ν is measure induced by β-Minkowski content.

There exists a constant $c_{0}>0$

$$
\nu=c_{0} \mu \quad \text { a.s. }
$$

Scaling limit of the 3D LERW

[H.T.-Li-Shiraishi, '24]

- β is the growth exponent of the 3D LERW
- γ_{m} LERW on \mathbb{D}_{m}
- $\bar{\mu}_{m}=m^{-\beta} \sum_{x \in \gamma_{m}} \delta_{x}$
- $\bar{\gamma}_{m}$ is LERW parametrized by $\bar{\mu}_{m}$
- $\bar{\gamma}_{m} \Rightarrow \gamma$ in the topology generated by the ρ-metric.

Scaling limit of the 3D LERW

[H.T.-Li-Shiraishi, '24]

- β is the growth exponent of the 3D LERW
- γ_{m} LERW on \mathbb{D}_{m}
- $\bar{\mu}_{m}=m^{-\beta} \sum_{x \in \gamma_{m}} \delta_{x}$
- $\bar{\gamma}_{m}$ is LERW parametrized by $\bar{\mu}_{m}$
- $\bar{\gamma}_{m} \Rightarrow \gamma$ in the topology generated by the ρ-metric.

- Scaling limit of 3D UST [Angel-Croydon-H.T.-Shiraishi, '20]

Sharp one-point estimates and Minkowski content for the scaling limit of three-dimensional loop-erased random walk

Sarai Hernandez-Torres, Xinyi Li, Daisuke Shiraishi
arxiv: 2403.07256

